Відділ фізики Сонця: результати досліджень

  1. Модернізовано й уведено в дію горизонтальний сонячний телескоп АЦУ-5 з монохроматором подвійної дифракції, що своєю спектральною роздільною здатністю є одним з найпотужніших телескопів світу.
  2. Проведено космічні спостереження сонячних осциляцій на орбітальних станціях КОРОНАС-І та КОРОНАС-Ф.
  3. За даними експериментів VIRGO/SPM, GOLF (SOHO) та ДИФОС (КОРОНАС-Ф) виявлено аномалії коливань яскравості та швидкості р-мод низьких ступенів; гравітаційні моди коливань не знайдено.
  4. Уперше показано, що хвилі, які аналізують під час геліосейсмологічних вимірів, проходячи під плямами, прискорюються.
  5. Побудовано напівемпіричні моделі спалахів та активних явищ, що описують еволюцію з часом їх поля швидкостей, магнітного поля й температури. Створено багатовимірні магнітогідродинамічні та магнітогідростатичні моделі фотосфери та сонячних плям.
  6. Отримано результати, що наближають нас до вирішення найактуальнішої проблеми сучасної фізики Сонця – пошуку ефективних джерел нагріву хромосфери та корони, а саме: показано, що енергія турбулентних магнітних полів у спокійній атмосфері Сонця може бути істотно більшою, ніж передбачали раніше. Цієї енергії вистачає для нагріву хромосфери й корони.
  7. Запропоновано ефективний механізм, що пояснює нагрів хромосфери. Показано, що дисипація струмів, посилена дією амбіполярної дифузії, підвищує температуру хромосфери на кілька тисяч градусів за хвилини.
  8. Показано, що процес розповсюдження хвиль в активній ділянці суттєво відхиляється від адіабатичного. Це понижує граничну частоту, в результаті чого 5-ти хвилинні коливання проникають у хромосферу й додатково нагрівають її.
  9. Показано, що конвекція не припиняється в середній фотосфері, як вважали раніше, а простягається до нижньої хромосфери. У середній фотосфері конвективні елементи тільки міняють знак контрасту та напрямок руху. Магнітні поля (400—1800 Гс) не подавляють конвекцію, як передбачали теоретичні розрахунки.
  10. Отримано розподіл випромінювання в спектрі Сонця в абсолютних енергетичних одиницях для ділянки спектра 300—1060 нм.
  11. Методи локальної геліосейсмології Сонця знайшли застосування для пояснення швидких пульсацій магнітних пекулярних Ap-зір. Магнітогідродинамічне моделювання цих пульсацій дозволило пояснити основні спостережні властивості RoAp-зір.
  12. Вирішено проблему вмісту заліза і кремнію у фотосфері Сонця. Отримано співвідношення для великої сітки моделей атмосфер зір, що дають можливість оцінити вміст літію, кисню й заліза залежно від зоряних параметрів. Ці результати мають важливе значення для розв’язку фундаментальних питань астрофізики, що стосуються нуклеосинтезу хімічних елементів під час Великого Вибуху, еволюції галактик та зір, внутрішньої будови і структури атмосфер зір і Сонця.